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Abstract: Scalarization is a frequently used approach for finding efficient solutions 
that satisfy the preferences of the Decision Maker (DM) in multicriteria 
optimization. The applicability of a scalarization problem to solve integer 
multicriteria problems depends on the possibilities it provides for the decrease of 
the computing complexity in finding optimal solutions of this class of problems. This 
paper presents a reference-neighbourhood scalarizing problem, possessing 
properties that make it particularly suitable for solving integer problems. One of 
the aims set in this development has also been the faster obtaining of desired 
criteria values, defined by the DM, requiring no additional information by him/her. 
An illustrative example demonstrates the features of this scalarizing problem.  

Keywords: Multicriteria optimization, integer programming, scalarization function. 

1. Introduction 

A lot of decision making problems in different areas of human activity are 
formulated and solved as integer optimization problems, and the dimension of such 
problems (objectives and/or variables) is constantly growing. Nowadays particular 
attention is paid to the explicit inclusion of several criteria in real applied models  
[2, 3, 4, 13]. 

The mathematic model, in which several conflicting and often 
incommensurable criteria (objective functions) are simultaneously optimized in the 
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set of feasible alternatives (solutions), is called a Multiobjective Optimization (MO) 
problem.  

This article discusses the MultiObjective Integer Linear Programming 
(MOILP) problems, which can be represented in the following way: 
(1)     “max ”{ ( ) }k

kf x c x= ,  ,k K∈  
subject to:  
(2)    ,Ax b≤  
(3)    dx ≤≤0 , 
(4)    −x  integer, 
where x  is an n-dimensional vector of variables, d  is an n-dimensional vector of 
variable’s upper bounds, A is an m × n matrix, b is the RHS vector and the vector 

, 1, ...,ic i k=  represents the coefficients of the objective function )(xfi . 
Constraints (2)-(4) define the feasible set of the variables (solutions) 1X . 

Problem (1)-(3) is a MultiObjective Linear Programming (MOLP) problem with 
continuous decision variables. Let us denote its feasible set of solutions by 2X . 

Let Z denotes the feasible region in the criteria space, i.e., the set of points 
kz R∈ , such that 1,),( XxKkxfz kk ∈∈= . 

Definition 1. 1Xx* ∈  is an efficient or Pareto optimal solution iff there is 
no 1Xx∈ , such that *ii xcxc ≥ for all i and *ii xcxc > for at least one i. 

Definition 2. 1
* Xx ∈  is said to be weakly efficient/Pareto optimal solution iff 

there is no 1Xx∈ , such that *xcxc ii > for all i . 
Although the term efficient is more often used for solutions x and the term 

Pareto Optimal (PO) − for points z, they can be used interchangeably. 
Usually the set Z for problem (1)-(4) contains more than one PO points. The 

upper bound of the PO solutions in the criteria space can be estimated from the 
ideal criteria vector, which is defined through maximization of each one of the 
criteria (1) in the feasible set of solutions 1X −

1

* max ( ), .k kx X
z f x k K

∈
= ∈  In order to 

avoid the solution of k single-criterion integer problems, the ideal criteria vector of 
MOLP problem can be used, rounded to the greater integer value. The approximate 
evaluation of the lower bound of the efficient solutions in the criteria space 

, ,nad
kz k K∈  can be obtained from the pay-off table. 

Each PO point can be a solution of the MO problem from a mathematic point 
of view. In order to select the final solution of the problem, additional information 
is needed, provided by the so called Decision Maker (DM). This information 
reflects DM’s preferences regarding the qualities of the solution sought [9]. 
Scalarization is a frequently used approach, in which the DM’s preferences are used 
to find one (weak) PO solution. Applying different scalarizing problems for the 
same input information, reflecting DM’s preferences, different efficient solutions 
can be found [1, 9, 10].  
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The formulation of the new reference-neighbourhood scalarizing problem is 
proposed with the intention to direct the process of search of (weak) PO solutions 
towards satisfying to the greatest extent of the aspiration values of a part of the 
criteria set by the DM. In addition, those that are pointed for improvement have 
greater importance compared to those, for which deterioration is admissible, or their 
directions of change are only given. 

2. Description of the new reference-neighbourhood scalarizing 
problem 

When solving a MOILP problem using an interactive algorithm, based on a 
classification-oriented scalarizing problem (such as the reference-neighbourhood 
scalarizing problem), the DM evaluates and compares the values of each one of the 
criteria kz , ,k K∈  in the currently found (weak) efficient solutions. In case the 
DM wants to search for another solution, he/she presents new preferences for 
desired or feasible alterations in the values of a part or of all the criteria.  

The DM might know better some of the criteria and could express this 
intention with the help of explicit values, by which they must be improved − kΔ , 

≥∈ Kk , or feasible values, by which they will be deteriorated − kσ , ≤∈ Kk . In 
other words, for this criteria group the DM is able to define the aspiration 
levels kf , ≤≥ ∪∈ KKk , that have to be achieved in the solution found. For another 
criteria group the DM might accept the values obtained within certain intervals and 
set limiting values about them in the form of intervals +− +≤≤− kkkkk tzxftz )( , 

><∈ Kk , or preservation of the already obtained value kz , =∈ Kk . The DM might 
not have any notion of the possible values of some criteria (especially at the initial 
iterations of the process of the solution selection) and he/she may only decide that 
some of the criteria must be improved on the account of deterioration of others, 
with respect to the current solution considered kz , k K >∈  or  <∈ Kk .  

In the new reference-neighbourhood scalarization problem proposed, the 
process of new solution search is accomplished on the basis of the information 
about the desired improvement of at least one criterion ( ≠∪ >≥ KK ∅) and about 
the acceptable deterioration of some criteria ( ≠∪ <≤ KK ∅). In order to speed up 
the choice of the most preferred solution, the DM’s preferences must be reflected as 
precisely as possible in the scalarizing problem applied. Obviously, the changes of 
the criteria belonging to the classes ≤≥ ∪ KK are the most desired by the DM. 
For the criteria belonging to classes <> ∪ KK the changes are recommendable, 
and for those to classes ><= ∪ KK , they are only restrictive. This might be 
reflected by means of determination of different importance-weights of the criteria 
belonging to different classes – comparing wished and recommendable criteria 
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changes – greater weight must be given to obtain the wished changes, while the 
reservation ones must be included in the problem constraints.  

We suggest the following scalarizing problem, New Reference-
Neighbourhood Problem (NRNP1) for finding a weak PO solution of MOILP 
problem:  

(5)   

( )( )

( )( ) ( )( )

1 1
**

**

** **

min ( ) min max

max max , max

k k k

x X x X k K K
k k

k k k k k k

k K k Kk k k k

f f x
S x

z z

z f x z f x

z z z z

≥ ≤

> <

∈ ∈ ∈ ∪

∈ ∈

⎛ ⎛ ⎞ω −
⎜ ⎜ ⎟= +
⎜ ⎜ ⎟−⎝ ⎠⎝

⎞⎞⎛ ⎛ ⎞ ⎛ ⎞ω − ω − ⎟⎟⎜ ⎜ ⎟ ⎜ ⎟+ ⎟⎟⎜ ⎟⎜ ⎜ ⎟− − ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎠

 

subject to:  

(6)    ,)( kk zxf ≥    =≥> ∪∪∈ KKKk , 

(7)    +− +≤≤− kkkkk tzxftz )( ,   ><∈ Kk , 

(8)    ,1Xx ∈  

where kz  is the value of the criterion with an index Kk ∈  for the current preferred 

solution, kf  is the desired (aspiration) level of the criterion with an index 
≤≥ ∪∈ KKk , 

⎪⎩

⎪
⎨
⎧

∈−

∈Δ+
=

≤

≥

.if,

,if ,

Kkz

Kkz
f

kk

kk
k δ

 

The first term of the scalarizing problem is introduced with the purpose to 
minimize the maximal deviation of the corresponding criteria from the aspiration 
levels being set, and the second one – to minimize the maximal deviation from the 
ideal value of the criteria, which are intended to be improved and to minimize the 
maximal deviation from the current solution found for the criteria with feasible 
deterioration. 

The influence of the weighting coefficients in the achievable functions of the 
scalarizing problems has been investigated in many publications [6, 7, 12]. The use 
of the coefficient kω  in the objective function of the scalarizing problem is with the 
designation to increase the influence of the criteria, for which the DM has set values 
that must be achieved. In order to evaluate the weight kω , it is proposed to use the 
total number of the criteria and the number of the criteria, distributed in each one of 
the classes, in conformance with the defined DM’s preferences of the new 
compromise solution being searched for  
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(9)    

, ,

, ,

, ,

, ,

k

K k K

K K k K

K K K k K

K K K K k K

≥

≥ ≤

≥ ≤ >

≥ ≤ > <

⎧ ∈
⎪

− ∈⎪⎪= ⎨
− − ∈⎪

⎪
− − − ∈⎪⎩

ω  

..  denotes the cardinality of the corresponding set.  
Hereby the problem does not require additional ranking of the criteria by the 

DM with respect to his/her wish for achievability of the preferences set [6]. This 
information is indirectly derived from the classification of the criteria into groups. 
The criteria in the group of wished alterations ( ≤≥ ∪ KK ) are of the highest 
priority, followed by the recommendable alterations ( <> ∪ KK ).  

The proposed scalarizing problem NRNP1 possesses the feature that the 
current solution of MOILP problem is a feasible solution (constraints (6)-(8) being 
satisfied) of the scalarizing problem, formulated at the next iteration. This is a very 
important feature, because finding a feasible solution of the integer problems is an 
NP-hard problem as well.  

In addition, with the help of his/her local preferences, the DM can set not only 
a reference point (defined by the desired values of the criteria), but a reference area 
as well (defined by intervals and directions of alteration). It could either be very 
narrow or considerably extended in case the DM has prescribed free improvement 
or free deterioration for most of the criteria. 

Theorem 1. The solution of NRNP1 scalarizing problem is a Pareto optimal 
solution of MOILP problem. 

P r o o f: 
Let ≠≥K ∅ and/or ≠>K ∅ and let 1

0 Xx ∈  be the optimal solution of the 
scalarizing problem NRNP1. Then ,)()( 0 xSxS ≤  for each 1x X∈ , satisfying the 
constraints (6)-(7). 

Let us assume that 1
0 Xx ∈  is not a weak Pareto optimal solution of the 

initial MOILP problem. In this case there must exist another 1x X′∈ , for which: 

(10)   0( ) ( )k kf x f x′ >   for Kk ∈  

and x′  is a feasible solution of NRNP1 problem, i.e., it satisfies the constrains:  
( ) ,k kf x z′ ≥    =≥> ∪∪∈ KKKk , 

( )k k k k kz t f x z t− +′− ≤ ≤ + ,   ><∈ Kk , 
After transformation of the objective function ( )S x′  of the scalarizing problem 

NRNP1, using inequalities (10), the following relation is obtained: 



 109

( )( )

( )( ) ( )( )

**

*

** **

( ) max

max max , max

k k k

k K K K
k k

k k kk k k

k K k K
k k k k

f f x
S x

z z

f f xf f x

z z z z

≥ ≤ =

< >

∈ ∪ ∪

∈ ∈

⎛ ⎞′ω −
⎜ ⎟′ = +
⎜ ⎟−⎝ ⎠

⎞⎛ ⎛ ⎞⎛ ⎞ ′′ ω −ω − ⎟⎜ ⎜ ⎟⎜ ⎟+ =
⎟⎜ ⎟⎜ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

( )( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

0 0

** **

** 0 0

** **

0 0

** **

max

max max ,

max

k k k k

k
k K K

k k k k

k k k k
k

k K
k k k k

k k k k
k

k K
k k k k

f f x f x f x

z z z z

z f x f x f x

z z z z

z f x f x f x

z z z z

≥ ≤

>

<

∈ ∪

∈

∈

⎛ ⎞⎛ ⎞′− −⎜ ⎟⎜ ⎟= ω + +⎜ ⎟⎜ ⎟− −⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎛ ⎞⎛ ⎞′− −⎜ ⎜ ⎟⎜ ⎟+ ω +
⎜ ⎜ ⎜ ⎟⎟− −⎝ ⎠⎝ ⎠⎝

⎞⎛ ⎞⎛ ⎞′− − ⎟⎜ ⎟⎜ ⎟ω + <
⎟⎜ ⎜ ⎟⎟− −⎝ ⎠⎝ ⎠⎠

 

( )( )

( )( ) ( )( )

0

**

** 0 0

0
** **

max

max max , max ( ).

k k k

k K K
k k

k k k k k k

k K k K
k k k k

f f x

z z

z f x z f x
S x

z z z z

≥ ≤

> >

∈ ∪

∈ ∈

⎛ ⎞ω −
⎜ ⎟< +
⎜ ⎟−
⎝ ⎠

⎞⎛ ⎛ ⎞ ⎛ ⎞ω − ω − ⎟⎜ ⎜ ⎟ ⎜ ⎟+ =⎟⎜ ⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

From the above given it follows that 0( ) ( )S x S x′ < . This is in contradiction 

with the assumption that 1
0 Xx ∈  is an optimal solution of NRNP1 scalarizing 

problem; therefore  1
0 Xx ∈  is a weak Pareto optimal solution. ■ 

The scalarizing problem NRNP1 may be presented in the form of an 
equivalent mixed integer problem at the expense of additional constraints and real 
variables  [15]. This Equivalent of NRNP1 problem (NRNP1Е) is with a 
differentiable objective function and can be solved with the help of the traditional 
methods of single-criterion optimization. NRNP1Е scalarizing problem has the 
following form: 
(11)    ( )βα +

∈ 1

min
Xx

 

subject to: 

(12)    
( )( ),

**
kk

kkk

zz
xff

−
−

≥
ωα ≤≥ ∪∈ KKk , 

(13)    
( )( ),

**

**

kk

kkk

zz
xfz

−
−

≥
ωβ  >∈ Kk , 
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(14)    
( )( ) ,

**
kk

kkk

zz
xfz

−
−

≥
ωβ  <∈ Kk , 

(15)     ,)( kk zxf ≥    =≥> ∪∪∈ KKKk , 

(16)    +− +≤≤− kkkkk tzxftz )( ,   ><∈ Kk , 
(17)    ,1Xx ∈  
(18)    βα ,  − arbitrary. 

As it can be seen, problems NRNP1 and NRNP1Е have the same feasible set 
of solutions 1Xx ∈ . The following assertion can be proved:  

Theorem 2. The optimal values of the objective functions of scalarizing 
problems NRNP1 and NRNP1Е are equal. 

P r o o f: 

Inequality (12) 
( )( ),

**
kk

kkk

zz
xff

−
−

≥
ωα must be satisfied for 

every ≤≥ ∪∈ KKk , then it is also true that  

(19)   
( )( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

≥
≤≥ ∪∈

kk

kkk

KKk zz
xff

**
max ωα . 

Similarly it follows from (13) that  

(20)   
( )( ) ,max

**

**

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

≥
>∈

kk

kkk

Kk zz
xfzωβ  

and from (14):  

(21)   
( )( ) ,max

** ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

≥
<∈

kk

kkk

Kk zz
xfzωβ  

For β  from (20) and (21), the following can be written: 

(22)   
( )( ) ( )( )**

** **
max max , max .k k k k k k

k K k K
k k k k

z f x z f x

z z z z> <∈ ∈

⎞⎛ ⎛ ⎞ ⎛ ⎞ω − ω − ⎟⎜ ⎜ ⎟ ⎜ ⎟≥
⎟⎜ ⎟⎜ ⎜ ⎟− −⎝ ⎠⎝ ⎠⎝ ⎠

β  

If the left and right sides of inequalities (19) and (22) are summed, it will be 
obtained: 

(23)   

( )( )

( )( ) ( )( )

**

**

** **

max

max max ,max .

k k k

k K K
k k

k k k k k k

k K k K
k k k k

f f x

z z

z f x z f x

z z z z

≥ ≤

> <

∈ ∪

∈ ∈

⎛ ⎞ω −
⎜ ⎟+ ≥ +
⎜ ⎟−⎝ ⎠

⎞⎛ ⎛ ⎞ ⎛ ⎞ω − ω − ⎟⎜ ⎜ ⎟ ⎜ ⎟+
⎟⎜ ⎟⎜ ⎜ ⎟− −⎝ ⎠⎝ ⎠⎝ ⎠

α β
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Let 'x  be the optimal solution of NRNP1E problem. Then  

(24) 

( )( )

( )( ) ( )( )

1
**

**

** **

'
min ( ) max

' '
max max , max ,

k k k

x X k K K
k k

k k k k k k

k K k K
k k k k

f f x

z z

z f x z f x

z z z z

≥ ≤

> <

∈ ∈ ∪

∈ ∈

⎛ ⎛ ⎞ω −
⎜ ⎜ ⎟+ = +
⎜ ⎜ ⎟−⎝ ⎠⎝

⎞⎞⎛ ⎛ ⎞ ⎛ ⎞ω − ω − ⎟⎟⎜ ⎜ ⎟ ⎜ ⎟+ ⎟⎟⎜ ⎟⎜ ⎜ ⎟− − ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎠

α β

 

because in the opposite case α + β  might be still decreasing.  
Then the right side of (24) can be written also as 

( )( )

( )( ) ( )( )

1 1
**

**

** **

min ( ) min max

max max , max ,

k k k

x X x X k K K
k k

k k k k k k

k K k K
k k k k

f f x

z z

z f x z f x

z z z z

≥ ≤

> <

∈ ∈ ∈ ∪

∈ ∈

⎛ ⎛ ⎞ω −
⎜ ⎜ ⎟+ = +
⎜ ⎜ ⎟−⎝ ⎠⎝

⎞⎞⎛ ⎛ ⎞ ⎛ ⎞ω − ω − ⎟⎟⎜ ⎜ ⎟ ⎜ ⎟+ ⎟⎟⎜ ⎟⎜ ⎜ ⎟− − ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎠

α β

 

which proves the theorem. ■ 
The scalarizing problem NRNP1E is a mixed integer problem, hence it is an 

NP-hard problem. It also possesses the property that a PO solution, found at a 
previous iteration, is a feasible solution of the current NRNP1E, which considerably 
reduces the computing efforts to find an optimal solution.   

3. An illustrative example 

A simple bi-criteria linear integer example is considered, which demonstrates the 
features of the offered new reference-neighbourhood scalarizing problem NRNP1:  

1 1 2max ( ) 4 ,f x x x= − +  

212 2)(max xxxf −=  
subject to: 

1 2

1 2

1

2

2 48,
3 72,
4,
4,

x x
x x
x
x

+ ≤
+ ≤
≥
≥

 

21, xx  −  integer. 
Before starting the process of choice of the most preferred solution, it is useful 

to present to the DM the best and the worst value of each one of the criteria in the 
feasible set of the variables. Since these values are intended to orient the DM in the 
possible limits of criteria alteration, approximate values are used. In order to obtain 
an approximate evaluation of the ideal point and to avoid the solution of a more 
difficult integer problem, each one of the criteria is optimized on the feasible 
continuous set of solutions. The following results are obtained: 
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**
1 (4; 22.67) 6.67f = , assume 7**

1 =z  and **
2 (22; 4) 14f = , 14**

2 =z . The evaluation 
of Nadir values, obtained from the pay-off table, is the following: 1 84nadz = −  and  

2 42nadz = − . In order to find an initial PO solution, the so called neutral compromise 
solution [15] may be used. The aspiration levels of the criteria are set, defined by: 

**

2

nad
k k

k
z zf +

= , 14,38 21 −=−= ff . As a current start solution, that will be 

subjected to improvement, an arbitrary selected, worse than kf  solution may be 
chosen, for example: 401 −=z  and 2 20z = − . Then {1; 2}K ≥ =  and 

221 == ωω . After solving NRNP1E scalarizing problem for these parameters, we 
find an initial PO solution 0 0

1 1 (6; 4) 20z f= = − , 0 0
2 2 (6; 4) 2z f= = − . 

In case the DM wants to improve the first criterion on the account of 
deterioration of the second one, a new scalarizing problem NRNP1E is formed with 
the following parameters: }2{},1{ == <> KK  and 1,2 21 == ωω . Through 
the weighting coefficient 21 =ω , higher priority is given to the desired 
improvement of the first criterion with respect to a feasible deterioration of the 
second one. After solution of NRNP1E problem with DM’s preferences thus 
defined, a new PO solution is found: 1 1 1 1

1 1 2 2(4;10) 6, (4;10) 16z f z f= = − = = − . It 
is noticed that in this solution the first criterion is considerably improved. If for 
finding a new current solution RNP1E scalarizing problem [5] is used, we obtain 
another PO solution 2 2

1 1 (4; 7) 9,z f= = −  2 2
2 2 (4;7) 10z f= = − , in which the desired 

improvement of the first criterion is smaller.  
Starting from an initial PO solution ( 0

1 20z = − , 20
2 −=z ), taking in mind the 

approximate interval of the criteria alteration, the DM might prefer to seek a 
solution that improves the second criterion on the account of a feasible deterioration 
of the first one. He/she sets aspiration levels: 7,40 21 =−= ff . Then 

}2{},1{ == ≥≤ KK  and 2,1 21 == ωω . For these parameters, the PO solution 
found with NRNP1 problem is: 3 3 3 3

1 1 2 2(13; 4) 48, (13; 4) 5z f z f= = − = = . The 
solution obtained is closer to the aspiration value of the criterion, for which 
improvement is sought, in comparison to attaining an aspiration value of the 
criterion, for which a feasible level of deterioration is set. The PO solution obtained 
with the help of RNP1E scalarizing problem [5] for the same defined preferences is: 

4 4 4 4
1 1 2 2(11; 4) 40, (11; 4) 3z f z f= = − = = .  

Fig. 1 presents the feasible area in the criteria space, as well as the PO 
solutions obtained. This test example demonstrates one of the features of the new 
reference-neighbourhood scalarizing problem NRNP1, namely that the priority of 
the desired criteria improvements in relation to other set alterations, are 
automatically given, and the PO solutions found satisfy the DM’s intentions for 
criteria improvement. In this way the convergence of the process, selecting a 
compromise solution, satisfactory for the DM, is accelerated. 
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Fig. 1 

4. Conclusion 

The presented reference-neighborhood scalarizing problem NRNP1 is designed to 
set priorities in satisfying DM’s preferences.  They direct the process of search of 
PO solutions in a way that will satisfy as close as possible the aspiration levels set 
by the DM.  

The scalarizing problem NRNP1 (as well as its equivalent problem NRNP1Е) 
preserves the feature of the scalarizing problems of this class. Namely, the current 
preferred solution at the previous iteration is a feasible solution for the scalarizing 
problem, solved at the next iteration. The possibilities for setting DM’s preferences 
about the allowable intervals of change or keeping the reached values for some 
criteria, can considerably tighten the feasible domain of the integer scalarizing 
problem, which has to be solved, and thus reduce the time for finding a new 
solution.   

Considering the development of interactive algorithms for solving 
multiobjective integer optimization problems, based on this problem formulation, 
strategies for search of continuous or approximate solutions during the initial 
iterations could be applied. At these iterations the DM directs the search process to 
this part of the Pareto front, where the criteria values are close to the values 
satisfactory for the DM. After that, the constraint for integer values is applied, so 
that integer PO solutions are found.  
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